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Tracking unstable steady states by large-amplitude low-frequency periodic modulation
of a control parameter: Phase-space analysis
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Inhibition of chaos in a dissipative nonlinear system that is slogmignresonantly modulated across an
instability domain of a fixed-point solution is investigated in detail, considerably extending previous analyses.
Comparison is made between the evolution of the modulated system and the evolution of the steady-state
solution in phase space as a function of the modulation parameter. It is shown that tracking of the steady-state
solution across the instability domafwhich can be achieved for a wide domain of modulation frequepcies
occurs in a nonintuitive way, as a result of the combination of two factors, which can be present in many
nonlinear systems.

PACS numbgs): 05.45-a, 42.60.Mi, 42.60.Fc, 42.65.Sf

[. INTRODUCTION and qualitatively similar theoretical predictiofi8]—about
total or partial inhibition of chaos and reduction of

Much effort has been devoted in the last years to thecomplexity—and corresponding experimental verifications
control of chaotic systems and stabilization of periodic and 8] were made for other modulated systems working on pe-
steady statef1—3], for which different methods have been riodic orbits instead of steady states.
developed. Essentially, these methods can be classified into In Ref. [6], however, there was no detailed analysis of
two main groups which differ in the type of control signal What occurs in the phase space, in the neighborhood of the
that is applied to the system. In one of these groifisa fixed-point solution, that could allow us to understand how

small-amplitude feedback control signal is applied, at approg:haos can be inhibited in such a wide domain of modulation

priate times, to one of the parameters of the system. In thg'equencies. In this paper we consideraple extend th analy-
other group(3], it is a small-amplitude periodic control sig- sis of Ref.[6] by performing such a detailed analysis in the

nal that is applied to a system’s parameter. In both cases, it hase space. By studying the linear stability of the branch of

. . : eady-state solutions and the relative evolution of the modu-
considered that the small-amplitude control signal does nq?ated system with respect to this branch, we are able to iden-
alter the structure of the system. y

. AN . tify the key features that allow us to understand how steady-
A different problem of elimination of chaos arises when a v y y

. . . “state tracking and chaos inhibition occur. As will become
system working on a steady-state regime needs to be periodlyijent they occur in a nonintuitive way.

cally quulated, with large modulation amplitude, and this  pq in [6], two different cases of modulation involving
modulation forces the system to penetrate back and forth gypcritical and supercritical Hopf bifurcations, respectively,
domain where the steady-state solution is unstdRlefs.  and different types of penetration within the unstable do-
[4,5] and references thereinf]). If the modulation fre-  main, will be considered. Although the efficiency of tracking
quency is much smaller than the natural frequencies of thg larger in the second case to be presented, we start first with
system, a good reference to study the system’s behavior ia simpler case where the phase-space is only three dimen-
phase space is the branch of steady-state solutions of tigonal (3D) and thus can be more easily represented.
unmodulated system that correspond to the sequence of val-
ues of the modulation parameter along one modulation pe-
riod. In[6] it was shown that for several well-known nonlin-

ear systems and for a wide domain of modulation The first case we consider is that of the Lorenz model,
frequenciegalways below the natural frequencies of the sys-pecause of its simplicity and relevance to fluid and laser
tem), the system was able to closely follow the steady state’gjynamicq9]. The equationgexpressed in a form convenient
branch across all the unstable domain, inhibiting appearangg describe a resonant two-level lasewith their three pa-

of chaos. No control signal other than the large-amplitudgameters A, o, b) and three variablesg, P, D), are ex-
low-frequency modulation signal was necessary to be appjicitly given and defined ifi6] [see Eqs(1) for §=0 in that

plied to the system to achieve tracking of the steady-statgeferencé The steady-state nontrivial solution is given by
solution. This theoretical prediction of Rg6] was experi-

mentally demonstrated with a far-infrared ammonia 14g&r
y 43k Es=+*VA—-1, P,=*xJA-1/A,

Il. LORENZ MODEL

D=1A, (1)

*Permanent address: Institute of Molecular and Atomic PhysicswhereA (which represents the pumping rate in the case of a
National Academy of Sciences, F. Skaryna Ave. 70, 220072 Minsklase) is the parameter that will undergo the slow large-
Belarus. amplitude modulation.

1063-651X/2000/6(B)/25006)/$15.00 PRE 61 2500 ©2000 The American Physical Society



PRE 61 TRACKING UIJNSTABLE STEADY STATES BY LARGE. .. 2501

I ) I '1

0.04p

N Im(A,)
AN
* N RC(}\Q‘:;)
~
0.00 - A 1.
~
[m] «— - \_’
~
N
-0.04
-3
Sy
Tt e- - -—_ __
E -0.08 —
5 10 15 20
FIG. 1. Thick line: evolution of the steady-state solution of the A
Lorenz-Haken model in the phase spake P, D), when pumping o ) )
Ais varied from 1 to 30. Other parameters are fixedrat2 and FIG. 2. Variation of the real eigenvalue, (dashed ling and

b=0.25. Continuougdotted line indicates stabléunstablg steady ~ 'eal (continuous ling and imaginary(dashed-dotted lineparts of

state. The subcritical Hopf bifurcation appear#é\at14. Two spiral  the complex-conjugate pair of the eigenvectoss versus pumping

lines (one attractive aA=5 and one repulsive #&=23) show the A The arrows indicate the vertical scales associated with each

two-dimensional local manifold at these points, and the dashed linegurve. The dotted line depicts the zero level for the curvenz gy

show the corresponding one-dimensional attractive manifolds. Th@ther parameters as in Fig. 1.

projection of the steady-state curve on the plaie P) is also

shown(thin line). IN1|>]Im\,|>|Re\, 4. Finally, Fig. 3 shows, for the same

case as Fig. 2, the angle between the branch of steady

In the absence of modulation, the stability of the steadystates and the 2D local manifolavhich is unstable forA

state solutior(1) is determined by the following three char- > A . and stable forA<A,g), at each point along the

acteristic exponents: branch. As can be seen, this angihose precise definition
is given in the figure captigris very small, especially in the
A =S+ Q & (27  unstable region.
3’ We now introduce the modulation in the forA(t) =A,
+m cos{t+¢), where the amplituden can be large and the
S Q a; . V3 Q modulation frequency) will be much smaller than the re-
Nog== 57557 3 *! 7( S- s/ laxation rates of the system. Since these ratesOdfe), this
where S=3(R?—Q%1?-R, R=4%(2a}-9a,a,+27a;), 12 , S B
a;=b+o+1, a,=b(c+A), az=20b(A-1), and Q A ;
=1(af—3a,), with R?—Q®%>0 in the region of parameters 10 .

here considered\; is always real and negative, whereas
and\ ; can have a negative or positive real part. The change
of sign in the real part ok, 3 occurs at a subcritical Hopf
bifurcation pointAg=o(b+ o+ 3)/(c—b—1). Above this
value, the system falls on the well-known Lorenz chaotic
attractor(which exists in the domaiA>Acy, whereAcy is
smaller thamg). Figure 1 shows the branch of steady-state 4
solutions (1) that is generated wheA is continuously in-
creased from 1 to nearly 30, in a case witk 0.25 ando

o. (degrees)

EAHB

=2. In the example considered in the figure the Hopf bifur- 5 10 15 20 25
cation occurs af\yg=14. Also shown are two spiral trajec- A
tories corresponding to the two-dimensiofi2D) focus-type FIG. 3. Dependence of the angie between the attractive or

manifold associated with, ;. This 2D manifold is stable for  repyisive local two-dimensional manifold and the curve of steady
A<Ayg and unstable foA>Ag. The dashed lines repre- stateqsee Fig. 1 on the pumping parametér For each value of,

sent the 1D stable manifold associated with Figure 2 the anglex is obtained by calculating the angle between the tangent
shows the values of;, A, and\ 3 as a function ofA, in the  to the curve of steady states and the projection of this curve on the
domain 5<A<23, which will be considered later. Clearly, local two-dimensional manifold.
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FIG. 4. Trajectory(thick line) of the deviation vectod in the
phase space, P, D), when the modulation range is frof=5 to FIG. 5. Left column: the three components of the vectasn
A=23 (the projection on the horizontal plane is also included as g0 axes E, P, D) are plotted as a function of the instantaneous
thin line), _for th(_e case considered _in Fig. 1. The spiral line Showsvalue of the pumping parametar Right column: the same as in the
the two-dimensional unstable manifold correspondingte23. left column, except that now the projectionscfre on the attrac-

) ) tive or repulsive two-dimensional manifoldi(, d”’) (d),(e) and on
means that)<1. In[6] it was shown that ifA; andm are  the attractive one-dimensional manifold,( (f) versus pumping.
chosen in such a way that the system at each period crossasows show the direction of the movement starting from the low-
the bifurcation pointA,z back and forth, the system closely est pumping valué=5.
tracks the steady-state solutidt) following its periodic

movement along the branch depicted in Fig. 1 and never . ) . . .
falling into the chaotic attractor. This occurs for any initial of the distancdd(t)] to the fixed point, since the displace-

conditions and any initial phase (the initial conditions only ment O_f the steady-state point along th_e branch depicted in
determine the duration of a transient pejiaed for a wide 19 1 iS almost paraII?I to the 2D manifold defined by the
domain of values of), which covers the range 16—10"2  SPiral trajectory ¢=10°, Fig. 3 and in addition the system
and depends also on the valuesigfandm. As an example 1S strqngly attractive in the or_thogonal dlrect|_on, F_lg_. 2.

of such regular evolution, see Fig. 1 in RES], which cor- Third, the modulus ofi(t) in Fig. 4 takes its minimum
responds to the cask,= 14, m=9, andQ =0.005. value not only atA=5 (which is normal, sinc&A=5 corre-

In order to investigate how this steady-state tracking ocSponds to the point deepest inside the stable domain, Fig. 1,
curs, Fig. 4 shows the trajectory in phase space of the vect@nd where the modulation speed is minimailit also atA
d(t)=x(t) —x¢(t) (thick continuous ling where x(t) =23 (which was unexpected, since it corresponds to the
=(E(t), P(t), D(t)) is the instantaneous “position” of the point deepest inside the unstable domain and where the
modulated system and(t) = (Es(t), P4(t), Dg(t)) given by  modulation speed is again minimaln fact, the value of
expressiongl) with A=A(t) =Ag+mcosQt+¢) is the in-  d(t) at A=23 is even smaller than &=5 [d(t)=0 atA
stantaneous position of the steady state, which moves along 23]. Since ReX, )/} varies from~ —10[atA(t) =5] to
the curve of Fig. 1. We have assumAg=14, m=9, and ~+10[atA(t)=23], one would have expected the modulus
0 =0.005, so thatA(t) oscillates from 5 to 23: &A(t) of d(t) to continuously increase as the system enters the
<23 (the rest of the parameters are as in Fig.Also de- unstable domaiA>14 and to continuously decrease when
picted, for comparison, is an outward spiral trajectory thatthe system again enters the stable donfainl4.
corresponds to the 2D unstable manifold for 23; this tra- Several of these features as well as some further details
jectory is centered at the poi®,0,0. Comparison between can be more clearly observed in Fig. 5, which shows the
Figs. 4 and 1 shows that things occur in a nonintuitive way parametric dependence of the veadasn A along one modu-

First, there is no inertial delay of the modulated systemlation period. The first columpFigs. a),(b),(c)] shows the
x(t) with respect to the unmodulated systeqft); on the  components of this vector on the three ake4, D consid-
contrary, x(t) “advances” x¢(t) in its movement, i.e., the ered in Figs. 1 and 4, whereas the second column shows the
vectord(t) points approximately in the same direction as theprojections ofd on the 2D local stable or unstable manifold
displacement of(t), both whenA increases and when it [Figs. §d),(e)] and on the 1D stable manifo[tFig. 5(f)]; we
decreases. have taken into account that the orientation of these mani-

Second, the spiral component of tdét) motion at the folds changes wheW varies. As pointed out above, in the
frequency|Im\, 4 ~400Q (see Fig. 2is very small(in Fig.  neighborhood of the extremal valde= 23 the modulus ofl
4 it is only noticeable neaA=14 whenA is decreasing  does not monotonically increase, nor does the spiral rotation
Instead of that, one would have expected a much larger anstart to show up. On the contrary, the modulusidgékes its
plitude of the rotation component, with a radius of the ordersmallest value. Because of the exact coincidence between
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x(t) andxg(t) at A=23, divergence between these two vec- E2(t)
tors can only occur after crossing that point, i.e., in the in-

terval going fromA=23 to A= 14, the point at which the 100
steady state again becomes attractive. Since this interval is
small, this explains why tracking of the steady state and in-
hibition of chaos can be achieved for a wide domain of val-

ues of() (and of other system parameterBivergence be- 50
tweenx(t) andxg(t) in the interval going fromA=23 to A

=14 is manifest in Figs. 4 and 5 not only as an increase of

the modulus ofl but also through the appearance of a small-
amplitude rotation which is reminiscent of the rotation of 0
trajectories on the 2D unstable manifold. (f is progres- 4000 8000 ¢
sively reducedfrom the value) =0.005 considered in Figs.

. - : . FIG. 6. Laser field intensitf?(t) as a function of time fowr
4 and 5, the amplitude of this rotation component INCreases_, '\, o5 A=17. Detuning modulation with parameters

and the system eventually falls into chaos, destroying the. ;5 ¢, _ 0 0009. ands. — =0 is switched on at the vertical
steady-state tracking process. dashed line. ' 0

Another unexpected feature in Fig. 5 is that the largest
separation betweer(t) and x(t) [i.e., the largestd(t)[]  cation is found at a certain valyé| = 5,5 Further decreas-

does not occur within the unstable domain bub@)=6-7, g | 5| brings about a period-doubling sequence that leads

i.e., quite close to the poinA=5) deepest inside the stable i, system into chaogrovided that a value oA>Acy is
domain; and also that it is in the very close neighborhood otgnsidered. see Sec.),llwhose maximum complexity is
this point,A=5 (in which the modulation speed is miniMal  aached aB=0. ’

that the rate of variation dfd(t)| with A is maximal. In [6] it was shown that by periodically modulatingin
All these features demonstrate that the effect of modulag,a torm 8(t) = o+ mcos Qt+¢) the system can cross all

tion on a system, even when this modulation is slow, canyq nstaple domaitwhich goes fromsg to — ) closely
significantly modify its dynamics in a way hardly predictable o ing the unstable steady state and thus never falling into
from simplistic models. In fact, large effects of slow param- 45 Figure 6 shows an example of such behavior in a case
eter sweeping or modulation on the behavior of nonlineagypqre jnitially the system was in the chaotic attractor. The
dissipative systems have already been reported in the paghying efficiency was shown to be extremely large, since it

(10,11, could be achieved for values 6f covering the range 10—
10" * (and even below for some particular conditipns
IIl. DETUNED LORENZ-HAKEN LASER In this case, the local unstable manifold of the steady-state

The Lorenz equations can be generalized to describe $P1Ution (4) is again determined by two complex-conjugate

two-level laser that can work with detuning between the fre-€ig€nvalues, which are denoted by and X, in Fig. 7(b),
quencies of the cavity and the atomic transitfd2,9,d. In whereas the local stable manifold now is 2D and is described

) ) ~ by two eigenvaluea; and\, [Fig. 7(a)], which for small| |
this case, the Var'aE'eE and P become complex£(t) are real and for larggs| are complex conjugate. Figure 8 is
=E(t)explie(t)} and P(t)=P(t)explie(t)}, where E(t) is  the equivalent to Fig. 2 in the present case: the angle
now a real amplitudeg(t) is the instantaneous field phase describes the local angle between the steady-state branch and
(which can be eliminated from the laser equatiprend the 2D unstable manifold in phase space, as a function of the
P(t)=V(t)+iW(t) is in general complex. The system now modulation parametes, for a case withc=2.0, b=0.25,

becomes described by four real equations: and A=17, as in Fig. 6. Note from Fig. 8 that now the
. evolution of the steady-state position in phase space upon
E=—-0o(E-AV), parameter modulation is very different from that found in the
V=—V—(1+0)Ws+W2cA/E+DE, 3.0 0.02 — 2.24
- Re(ll,z) dos RCOVJ,A)-
W=-W+(1+0)Vé—VocAWE, (3)
0.00
D=-b(D-1)-bVE, 04 220
whereé is a quantity proportional to the cavity detuning. For 83 oo 0.02
6=0, W=0 and the previous case is recovered. The non- 516
trivial steady-state solution of this system is now 0.04 '
04
Ec=AV,=AW,/6= = JA—1- &, (4) ; o | lmou
3l L1 Jog 0ol "1 L1 1592
DS=(52+ 1)/A. 1.0 05 00 05 1.0 1.0 -05 00505 1.0
It is well known that for sufficiently largés| this solution is FIG. 7. The same as in Fig. 2 but for the case of detuned laser at

always stable. By decreasing| a supercritical Hopf bifur-  fixed pumpingA=17.
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90 tracking process, since it again implies that instabilitythe
form of a fast rotation componéntan only grow in a re-
80 duced fraction of the modulation period, after crossing the
= point §=0 and before entering the stable domém Fig. 9
@ the rotation component is noticeable between0.3 and 0.7
:cga 70 and between-0.3 and—0.7). Coincidence betweenandxg
= at =0, however, occurs only for the componegtsV, and
3 60 D, but it does not occur for the componeWwt [Fig. 9(c)],
whose modulus is maximum a@=0. This feature seems to
50 be directly related to two other featurds) Analysis of the
By Syp dependence of the steady-state solutnwith § and com-
parison with Fig. 9 shows that whereas the variatie¥,
40 _0' 5 0'0 0'5 1'0 andD are always “advanced” in phase space with respect to

the steady-state positiofi.e., the point representing the

FIG. 8. The same angle as in Fig. 3 but versus detuing Modulated system in the subspadg (V, D) moves in ap-

Vertical dashed lines show the Hopf bifurcation threshold for sym-Proximately the same direction as the point representing the
metrical values of the detuning. steady-state solution and appears in front hfdas in the case

considered in Sec. I, the variabW¥ is always “delayed”
previous case, since it takes place in a direction almost pefi-€., it evolves behind the steady-state ppifi) Es, Vs,
pendicular to the 2D unstable manifold (60%<90°). andD; have a local maximunicase ofEg andV;) or mini-

To consider the effect of modulation éf we choose, for mMmum (case ofDg) at 6=0, whereasi\s has no local maxi-
instance,m=0.9 and Q=0.0007. The fact that now mum within the modulation interval. All this allows us to
~90° and Ref )/Q~4x 10° [which is one order of mag- interpret the coincidencé=Es, V=V;, andD=Ds at §
nitude larger than Ra()/Q in the case of Sec.]Jisuggests =0 as a requirement necessary to keep “advancement” of
that, in principle, the instantaneous state of the system wilthese variableg, V, andD with respect to their steady-state
remain, upon parameter modulation, closer to the steady/lues in the whole modulation period.e., E-Es, V
state point than in the case considered in Se¢Nibw, how-  —Vs, andD — D¢ must change sign a=0). In contrast, for
ever, Rel3)/Q~30 at the center of the unstable domainthe “delayed” variableW the previous condition on the
(5=0), which is also several times larger than in the case ofhange of sign ofV—W; at 6=0 is not necessary and, in
Sec. |, but this could be compensated by the fact that in théffect, it is not met. Nevertheless, this does not seem to have
stable domain this ratio is also larger, in modulus, than beany influence on the success of the tracking procedure.
fore (~—60 at|8/=0.9).] Figure 9 shows the parametric Second, the small rotating component that appears after
dependence ol of the Vectord:x_XS, \Nherexz(E7 V, CrOSSing the pOint5:0 (from 6=0.3 to 0.7 and from
W, D) is the instantaneous vector describing the modulated-0-3 to—0.7 in Fig. 9 decreases, as before, with increasing
system andks=(Es, Vs, Wy, Dy is the “instantaneous” ), and increases with decreasifiy) up to the point that
steady-state solution. Figure¢ad-d show the projection of ~€ventually can bring the system into chaos.

d on the axe<, V, W, andD, respectivelyjthe projections of Third, also as in Fig. 5, the maximum distance between
d on the unstable manifold are similar to Figga9and (b), the modul_ated and unmodulated_ system solutions is not
and the projections on the stable manifold are similar to Figréached within the unstable domain but near the most stable
9(d)]. Features similar to those described in Fig. 5, again iPoints 6=*1 (approximately at6=0.7). It is also worth
contradiction with simplistic expectations, are found. noting that if Fig. 9 is recalculated for the ca@e=0.005(to

First, the modulated system state coincides with théave the same value as in Fig, & is found that the modulus

steady state just at the center of the unstable dofiain at ~ Of d reaches values smaller than those obtained in Fig. 5, a
5=0). This, as before, is crucial for the efficiency of the fact that can be attributed to the different value of the angle
a in both cases.

S ——Y T Qualitatively similar features are also found in a much

more complex model of an optically pumped laser with

® pump polarization modulation, which are not reported here

10 Z for the sake of brevity13].
0, {5x10° IV. CONCLUSIONS
(d)H ax10° L . . o

In conclusion, in our detailed analysis of the evolution in
- o phase space of a slowly modulated nonlinear system that
z or 10 2 penetrates or crosses back and forth an unstable domain of
the parameter space has allowed us to understand the way in

. dax10°® which the system can track, with no control signal, a steady-
-2x10 '_0'5 ' 0'0 ' 0'5 S '_0'5 ‘ 0'0 ' 0'5 5 state solution across the unstable domain. This fact occurs in

many systems for a wide domain of modulation frequencies
well below the natural evolution frequencies of the system.
We have found, in particular, that such efficient tracking oc-

FIG. 9. Dependence of the four components of the vedton
the detuningd, for the case considered in Figs. 7 and 8.
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curs because of the presence and combination of the followsteady-state solution, nor by the subcritical or supercritical
ing two factors. character of the local bifurcations affecting that solution.
(i) The steady-state fixed point changes the sense of itRather, it seems to be determined by qualitative dynamic
displacement in phase space at a certain value of the modgeatures of the modulation process—such as factor
lation parameter that lies within the unstable dom@invas above—and symmetry considerations. Faciigris contrary
A=23 in the example of Figs. 1-5 ardt=0 in that of Figs.  to what would be expected from simplistic approaches, but it
6-9. occurs at least for the two models considered in this work
(it) The modulated system does not follow the displace<and for the model of Ref13] pointed out above It is well
ment of the steady-state point in phase space going “beknown that parameter sweeping or modulation, even when it

hind” that point, but going “in front of" it. _is slow, can strongly modify the dynamic behavior of a non-
Both factors must be met for most of the system’s vari-jinear system, in a way that can hardly be predicted from
ables(or phase space projections simple reasoning. It would be interesting to investigate

Combination of these two factors implies that, necessaryhether factor(ii) occurs in most nonlinear systems or not,
ily, the distance between the modulated and unmodulategind to what point it can be influenced by the values of the
systems in phase space decreases to zero just when the fix@ghracteristic exponents of the local stable and unstable
point changes its displacement sense. This leaves only a rgyanifolds of the tracked steady state, in order to ascertain the

duced fraction of the total modulation period available fordegree of generality of the tracking effect here described.
growing divergence between the modulated and unmodu-

lated systems, so that this divergence cannot reach large val-
ues and efficient tracking can be achieved.

Because of the factdii), it is difficult to establish simple
precise rules to determine in which systems and in which Financial support from the Spanish DGICY(Contract
conditions efficient tracking of steady states can be achieveNo. PB95-0778-CORand Generalitat de Catalunya is ac-
in a wide domain of modulation frequencies. In particular, itknowledged. A.K. also acknowledges financial support from
does not seem to be directly determined by the values of ththe Comisim Interministerial de Ciencia y Tecnol@gof the
characteristic exponents describing the stability of theSpanish Goverment, Ref. No. SB96-A00657493.
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