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Tracking unstable steady states by large-amplitude low-frequency periodic modulation
of a control parameter: Phase-space analysis
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Inhibition of chaos in a dissipative nonlinear system that is slowly~nonresonantly! modulated across an
instability domain of a fixed-point solution is investigated in detail, considerably extending previous analyses.
Comparison is made between the evolution of the modulated system and the evolution of the steady-state
solution in phase space as a function of the modulation parameter. It is shown that tracking of the steady-state
solution across the instability domain~which can be achieved for a wide domain of modulation frequencies!
occurs in a nonintuitive way, as a result of the combination of two factors, which can be present in many
nonlinear systems.

PACS number~s!: 05.45.2a, 42.60.Mi, 42.60.Fc, 42.65.Sf
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I. INTRODUCTION

Much effort has been devoted in the last years to
control of chaotic systems and stabilization of periodic a
steady states@1–3#, for which different methods have bee
developed. Essentially, these methods can be classified
two main groups which differ in the type of control sign
that is applied to the system. In one of these groups@2# a
small-amplitude feedback control signal is applied, at app
priate times, to one of the parameters of the system. In
other group@3#, it is a small-amplitude periodic control sig
nal that is applied to a system’s parameter. In both cases,
considered that the small-amplitude control signal does
alter the structure of the system.

A different problem of elimination of chaos arises when
system working on a steady-state regime needs to be per
cally modulated, with large modulation amplitude, and t
modulation forces the system to penetrate back and for
domain where the steady-state solution is unstable~Refs.
@4,5# and references therein,@6#!. If the modulation fre-
quency is much smaller than the natural frequencies of
system, a good reference to study the system’s behavio
phase space is the branch of steady-state solutions o
unmodulated system that correspond to the sequence of
ues of the modulation parameter along one modulation
riod. In @6# it was shown that for several well-known nonlin
ear systems and for a wide domain of modulati
frequencies~always below the natural frequencies of the s
tem!, the system was able to closely follow the steady sta
branch across all the unstable domain, inhibiting appeara
of chaos. No control signal other than the large-amplitu
low-frequency modulation signal was necessary to be
plied to the system to achieve tracking of the steady-s
solution. This theoretical prediction of Ref.@6# was experi-
mentally demonstrated with a far-infrared ammonia laser@7#,

*Permanent address: Institute of Molecular and Atomic Phys
National Academy of Sciences, F. Skaryna Ave. 70, 220072 Min
Belarus.
PRE 611063-651X/2000/61~3!/2500~6!/$15.00
e
d

to

-
e

is
ot

di-

a

e
in
he
al-
e-

-
’s
ce
e
p-
te

and qualitatively similar theoretical predictions@8#—about
total or partial inhibition of chaos and reduction o
complexity—and corresponding experimental verificatio
@8# were made for other modulated systems working on
riodic orbits instead of steady states.

In Ref. @6#, however, there was no detailed analysis
what occurs in the phase space, in the neighborhood of
fixed-point solution, that could allow us to understand ho
chaos can be inhibited in such a wide domain of modulat
frequencies. In this paper we considerable extend the an
sis of Ref.@6# by performing such a detailed analysis in th
phase space. By studying the linear stability of the branch
steady-state solutions and the relative evolution of the mo
lated system with respect to this branch, we are able to id
tify the key features that allow us to understand how stea
state tracking and chaos inhibition occur. As will becom
evident, they occur in a nonintuitive way.

As in @6#, two different cases of modulation involvin
subcritical and supercritical Hopf bifurcations, respective
and different types of penetration within the unstable d
main, will be considered. Although the efficiency of trackin
is larger in the second case to be presented, we start first
a simpler case where the phase-space is only three dim
sional ~3D! and thus can be more easily represented.

II. LORENZ MODEL

The first case we consider is that of the Lorenz mod
because of its simplicity and relevance to fluid and la
dynamics@9#. The equations~expressed in a form convenien
to describe a resonant two-level laser!, with their three pa-
rameters (A, s, b) and three variables (E, P, D), are ex-
plicitly given and defined in@6# @see Eqs.~1! for d50 in that
reference#. The steady-state nontrivial solution is given by

Es56AA21, Ps56AA21/A, Ds51/A, ~1!

whereA ~which represents the pumping rate in the case o
laser! is the parameter that will undergo the slow larg
amplitude modulation.
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In the absence of modulation, the stability of the stea
state solution~1! is determined by the following three cha
acteristic exponents:

l15S1
Q

S
2

a1

3
, ~2!

l2,352
S

2
2

Q

2S
2

a1

3
6 i

A3
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Q
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where S5A3 (R22Q3)1/22R, R5 1
54 (2a1

329a2a1127a3),
a15b1s11, a25b(s1A), a352sb(A21), and Q
5 1

9 (a1
223a2), with R22Q3.0 in the region of parameter

here considered.l1 is always real and negative, whereasl2
andl3 can have a negative or positive real part. The cha
of sign in the real part ofl2,3 occurs at a subcritical Hop
bifurcation pointAHB5s(b1s13)/(s2b21). Above this
value, the system falls on the well-known Lorenz chao
attractor~which exists in the domainA.ACH , whereACH is
smaller thanAHB). Figure 1 shows the branch of steady-sta
solutions ~1! that is generated whenA is continuously in-
creased from 1 to nearly 30, in a case withb50.25 ands
52. In the example considered in the figure the Hopf bif
cation occurs atAHB514. Also shown are two spiral trajec
tories corresponding to the two-dimensional~2D! focus-type
manifold associated withl2,3. This 2D manifold is stable for
A,AHB and unstable forA.AHB . The dashed lines repre
sent the 1D stable manifold associated withl1. Figure 2
shows the values ofl1 , l2, andl3 as a function ofA, in the
domain 5<A<23, which will be considered later. Clearly

FIG. 1. Thick line: evolution of the steady-state solution of t
Lorenz-Haken model in the phase space (E, P, D), when pumping
A is varied from 1 to 30. Other parameters are fixed ats52 and
b50.25. Continuous~dotted! line indicates stable~unstable! steady
state. The subcritical Hopf bifurcation appears atA514. Two spiral
lines ~one attractive atA55 and one repulsive atA523) show the
two-dimensional local manifold at these points, and the dashed l
show the corresponding one-dimensional attractive manifolds.
projection of the steady-state curve on the plane (E, P) is also
shown~thin line!.
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ul1u.uIm l2u.uRel2,3u. Finally, Fig. 3 shows, for the sam
case as Fig. 2, the anglea between the branch of stead
states and the 2D local manifold~which is unstable forA
.AHB and stable forA,AHB), at each point along the
branch. As can be seen, this angle~whose precise definition
is given in the figure caption! is very small, especially in the
unstable region.

We now introduce the modulation in the formA(t)5A0
1m cos(Vt1w), where the amplitudem can be large and the
modulation frequencyV will be much smaller than the re
laxation rates of the system. Since these rates areO(1), this

es
e

FIG. 2. Variation of the real eigenvaluel1 ~dashed line! and
real ~continuous line! and imaginary~dashed-dotted line! parts of
the complex-conjugate pair of the eigenvectorsl2,3 versus pumping
A. The arrows indicate the vertical scales associated with e
curve. The dotted line depicts the zero level for the curve Re(l2,3).
Other parameters as in Fig. 1.

FIG. 3. Dependence of the anglea between the attractive o
repulsive local two-dimensional manifold and the curve of stea
states~see Fig. 1! on the pumping parameterA. For each value ofA,
the anglea is obtained by calculating the angle between the tang
to the curve of steady states and the projection of this curve on
local two-dimensional manifold.
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means thatV!1. In @6# it was shown that ifA0 andm are
chosen in such a way that the system at each period cro
the bifurcation pointAHB back and forth, the system close
tracks the steady-state solution~1! following its periodic
movement along the branch depicted in Fig. 1 and ne
falling into the chaotic attractor. This occurs for any initi
conditions and any initial phasew ~the initial conditions only
determine the duration of a transient period! and for a wide
domain of values ofV, which covers the range 1023–1022

and depends also on the values ofA0 andm. As an example
of such regular evolution, see Fig. 1 in Ref.@6#, which cor-
responds to the caseA0514, m59, andV50.005.

In order to investigate how this steady-state tracking
curs, Fig. 4 shows the trajectory in phase space of the ve
d(t)5x(t)2xs(t) ~thick continuous line!, where x(t)
5„E(t), P(t), D(t)… is the instantaneous ‘‘position’’ of the
modulated system andxs(t)5„Es(t), Ps(t), Ds(t)… given by
expressions~1! with A[A(t)5A01m cos(Vt1w) is the in-
stantaneous position of the steady state, which moves a
the curve of Fig. 1. We have assumedA0514, m59, and
V50.005, so thatA(t) oscillates from 5 to 23: 5<A(t)
<23 ~the rest of the parameters are as in Fig. 1!. Also de-
picted, for comparison, is an outward spiral trajectory t
corresponds to the 2D unstable manifold forA523; this tra-
jectory is centered at the point~0,0,0!. Comparison between
Figs. 4 and 1 shows that things occur in a nonintuitive w

First, there is no inertial delay of the modulated syst
x(t) with respect to the unmodulated systemxs(t); on the
contrary,x(t) ‘‘advances’’ xs(t) in its movement, i.e., the
vectord(t) points approximately in the same direction as t
displacement ofxs(t), both whenA increases and when
decreases.

Second, the spiral component of thed(t) motion at the
frequencyuIml2,3u;400V ~see Fig. 2! is very small~in Fig.
4 it is only noticeable nearA514 whenA is decreasing!.
Instead of that, one would have expected a much larger
plitude of the rotation component, with a radius of the ord

FIG. 4. Trajectory~thick line! of the deviation vectord in the
phase space (E, P, D), when the modulation range is fromA55 to
A523 ~the projection on the horizontal plane is also included a
thin line!, for the case considered in Fig. 1. The spiral line sho
the two-dimensional unstable manifold corresponding toA523.
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of the distanceud(t)u to the fixed point, since the displace
ment of the steady-state point along the branch depicte
Fig. 1 is almost parallel to the 2D manifold defined by t
spiral trajectory (a&10°, Fig. 3! and in addition the system
is strongly attractive in the orthogonal direction, Fig. 2.

Third, the modulus ofd(t) in Fig. 4 takes its minimum
value not only atA55 ~which is normal, sinceA55 corre-
sponds to the point deepest inside the stable domain, Fig
and where the modulation speed is minimal! but also atA
523 ~which was unexpected, since it corresponds to
point deepest inside the unstable domain and where
modulation speed is again minimal!. In fact, the value of
d(t) at A523 is even smaller than atA55 @d(t)50 at A
523]. Since Re(l2,3)/V varies from;210 @at A(t)55] to
;110 @at A(t)523], one would have expected the modul
of d(t) to continuously increase as the system enters
unstable domainA.14 and to continuously decrease wh
the system again enters the stable domainA,14.

Several of these features as well as some further de
can be more clearly observed in Fig. 5, which shows
parametric dependence of the vectord on A along one modu-
lation period. The first column@Figs. 5~a!,~b!,~c!# shows the
components of this vector on the three axesE, P, D consid-
ered in Figs. 1 and 4, whereas the second column shows
projections ofd on the 2D local stable or unstable manifo
@Figs. 5~d!,~e!# and on the 1D stable manifold@Fig. 5~f!#; we
have taken into account that the orientation of these m
folds changes whenA varies. As pointed out above, in th
neighborhood of the extremal valueA523 the modulus ofd
does not monotonically increase, nor does the spiral rota
start to show up. On the contrary, the modulus ofd takes its
smallest value. Because of the exact coincidence betw

a
s

FIG. 5. Left column: the three components of the vectord on
the axes (E, P, D) are plotted as a function of the instantaneo
value of the pumping parameterA. Right column: the same as in th
left column, except that now the projections ofd are on the attrac-
tive or repulsive two-dimensional manifold (di , di8) ~d!,~e! and on
the attractive one-dimensional manifold (d') ~f! versus pumping.
Arrows show the direction of the movement starting from the lo
est pumping valueA55.
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x(t) andxs(t) at A523, divergence between these two ve
tors can only occur after crossing that point, i.e., in the
terval going fromA523 to A514, the point at which the
steady state again becomes attractive. Since this interv
small, this explains why tracking of the steady state and
hibition of chaos can be achieved for a wide domain of v
ues ofV ~and of other system parameters!. Divergence be-
tweenx(t) andxs(t) in the interval going fromA523 to A
514 is manifest in Figs. 4 and 5 not only as an increase
the modulus ofd but also through the appearance of a sm
amplitude rotation which is reminiscent of the rotation
trajectories on the 2D unstable manifold. IfV is progres-
sively reduced~from the valueV50.005 considered in Figs
4 and 5!, the amplitude of this rotation component increas
and the system eventually falls into chaos, destroying
steady-state tracking process.

Another unexpected feature in Fig. 5 is that the larg
separation betweenx(t) and xs(t) @i.e., the largestud(t)u]
does not occur within the unstable domain but atA(t).6 –7,
i.e., quite close to the point (A55) deepest inside the stab
domain; and also that it is in the very close neighborhood
this point,A55 ~in which the modulation speed is minimal!,
that the rate of variation ofud(t)u with A is maximal.

All these features demonstrate that the effect of modu
tion on a system, even when this modulation is slow, c
significantly modify its dynamics in a way hardly predictab
from simplistic models. In fact, large effects of slow para
eter sweeping or modulation on the behavior of nonlin
dissipative systems have already been reported in the
@10,11#.

III. DETUNED LORENZ-HAKEN LASER

The Lorenz equations can be generalized to describ
two-level laser that can work with detuning between the f
quencies of the cavity and the atomic transition@12,9,6#. In

this case, the variablesE and P become complex:Ẽ(t)

5E(t)exp$iw(t)% and P̃(t)5P(t)exp$iw(t)%, where E(t) is
now a real amplitude,w(t) is the instantaneous field phas
~which can be eliminated from the laser equations!, and
P(t)[V(t)1 iW(t) is in general complex. The system no
becomes described by four real equations:

Ė52s~E2AV!,

V̇52V2~11s!Wd1W2sA/E1DE,

Ẇ52W1~11s!Vd2VsAW/E, ~3!

Ḋ52b~D21!2bVE,

whered is a quantity proportional to the cavity detuning. F
d50, W50 and the previous case is recovered. The n
trivial steady-state solution of this system is now

Es5AVs5AWs /d56AA212d2, ~4!

Ds5~d211!/A.

It is well known that for sufficiently largeudu this solution is
always stable. By decreasingudu a supercritical Hopf bifur-
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cation is found at a certain valueudu5dHB . Further decreas-
ing udu brings about a period-doubling sequence that le
the system into chaos~provided that a value ofA.ACH is
considered, see Sec. II!, whose maximum complexity is
reached atd50.

In @6# it was shown that by periodically modulatingd in
the form d(t)5d01m cos (Vt1w) the system can cross a
the unstable domain~which goes fromdHB to 2dHB) closely
tracking the unstable steady state and thus never falling
chaos. Figure 6 shows an example of such behavior in a
where initially the system was in the chaotic attractor. T
tracking efficiency was shown to be extremely large, sinc
could be achieved for values ofV covering the range 1021–
1024 ~and even below for some particular conditions!.

In this case, the local unstable manifold of the steady-s
solution ~4! is again determined by two complex-conjuga
eigenvalues, which are denoted byl3 and l4 in Fig. 7~b!,
whereas the local stable manifold now is 2D and is descri
by two eigenvaluesl1 andl2 @Fig. 7~a!#, which for smalludu
are real and for largeudu are complex conjugate. Figure 8
the equivalent to Fig. 2 in the present case: the anglea
describes the local angle between the steady-state branch
the 2D unstable manifold in phase space, as a function of
modulation parameterd, for a case withs52.0, b50.25,
and A517, as in Fig. 6. Note from Fig. 8 that now th
evolution of the steady-state position in phase space u
parameter modulation is very different from that found in t

FIG. 6. Laser field intensityE2(t) as a function of time fors
52, b50.25, A517. Detuning modulation with parametersm
51.2, V50.0009, andd05w50 is switched on at the vertica
dashed line.

FIG. 7. The same as in Fig. 2 but for the case of detuned lase
fixed pumpingA517.



pe

-

w
d

in
o

th
be
ic

te

ig
i

th

e

the

t to
e

the

o

’ of
e

n
ave

fter

ng

en
not
able

5, a
gle

ch
ith
ere

in
that
in of
ay in
dy-
rs in
ies
m.
c-

m

2504 PRE 61A. KUL’MINSKII, R. VILASECA, AND R. CORBALÁ N
previous case, since it takes place in a direction almost
pendicular to the 2D unstable manifold (60°,a,90°).

To consider the effect of modulation ofd, we choose, for
instance, m50.9 and V50.0007. The fact that nowa
;90° and Re(l1,2)/V;43103 @which is one order of mag
nitude larger than Re(l1)/V in the case of Sec. II# suggests
that, in principle, the instantaneous state of the system
remain, upon parameter modulation, closer to the stea
state point than in the case considered in Sec. II.@Now, how-
ever, Re(l3,4)/V;30 at the center of the unstable doma
(d50), which is also several times larger than in the case
Sec. I, but this could be compensated by the fact that in
stable domain this ratio is also larger, in modulus, than
fore (;260 at udu50.9).] Figure 9 shows the parametr
dependence ond of the vectord5x2xs , wherex5(E, V,
W, D) is the instantaneous vector describing the modula
system andxs5(Es , Vs , Ws , Ds) is the ‘‘instantaneous’’
steady-state solution. Figures 9~a–d! show the projection of
d on the axesE, V, W, andD, respectively@the projections of
d on the unstable manifold are similar to Figs. 9~a! and ~b!,
and the projections on the stable manifold are similar to F
9~d!#. Features similar to those described in Fig. 5, again
contradiction with simplistic expectations, are found.

First, the modulated system state coincides with
steady state just at the center of the unstable domain~i.e., at
d50). This, as before, is crucial for the efficiency of th

FIG. 8. The same angle as in Fig. 3 but versus detuningd.
Vertical dashed lines show the Hopf bifurcation threshold for sy
metrical values of the detuning.

FIG. 9. Dependence of the four components of the vectord on
the detuningd, for the case considered in Figs. 7 and 8.
r-

ill
y-

f
e
-

d
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e

tracking process, since it again implies that instability~in the
form of a fast rotation component! can only grow in a re-
duced fraction of the modulation period, after crossing
point d50 and before entering the stable domain~in Fig. 9
the rotation component is noticeable betweend50.3 and 0.7
and between20.3 and20.7). Coincidence betweenx andxs
at d50, however, occurs only for the componentsE, V, and
D, but it does not occur for the componentW @Fig. 9~c!#,
whose modulus is maximum atd50. This feature seems to
be directly related to two other features:~i! Analysis of the
dependence of the steady-state solution~4! with d and com-
parison with Fig. 9 shows that whereas the variablesE, V,
andD are always ‘‘advanced’’ in phase space with respec
the steady-state position@i.e., the point representing th
modulated system in the subspace (E, V, D) moves in ap-
proximately the same direction as the point representing
steady-state solution and appears in front of it#, as in the case
considered in Sec. II, the variableW is always ‘‘delayed’’
~i.e., it evolves behind the steady-state point!. ~ii ! Es , Vs ,
andDs have a local maximum~case ofEs andVs) or mini-
mum ~case ofDs) at d50, whereasWs has no local maxi-
mum within the modulation interval. All this allows us t
interpret the coincidenceE5Es , V5Vs , and D5Ds at d
50 as a requirement necessary to keep ‘‘advancement’
these variablesE, V, andD with respect to their steady-stat
values in the whole modulation period~i.e., E2Es , V
2Vs , andD2Ds must change sign atd50). In contrast, for
the ‘‘delayed’’ variableW the previous condition on the
change of sign ofW2Ws at d50 is not necessary and, i
effect, it is not met. Nevertheless, this does not seem to h
any influence on the success of the tracking procedure.

Second, the small rotating component that appears a
crossing the pointd50 ~from d50.3 to 0.7 and from
20.3 to20.7 in Fig. 9! decreases, as before, with increasi
V, and increases with decreasingV up to the point that
eventually can bring the system into chaos.

Third, also as in Fig. 5, the maximum distance betwe
the modulated and unmodulated system solutions is
reached within the unstable domain but near the most st
points d561 ~approximately atd50.7). It is also worth
noting that if Fig. 9 is recalculated for the caseV50.005~to
have the same value as in Fig. 5!, it is found that the modulus
of d reaches values smaller than those obtained in Fig.
fact that can be attributed to the different value of the an
a in both cases.

Qualitatively similar features are also found in a mu
more complex model of an optically pumped laser w
pump polarization modulation, which are not reported h
for the sake of brevity@13#.

IV. CONCLUSIONS

In conclusion, in our detailed analysis of the evolution
phase space of a slowly modulated nonlinear system
penetrates or crosses back and forth an unstable doma
the parameter space has allowed us to understand the w
which the system can track, with no control signal, a stea
state solution across the unstable domain. This fact occu
many systems for a wide domain of modulation frequenc
well below the natural evolution frequencies of the syste
We have found, in particular, that such efficient tracking o

-
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curs because of the presence and combination of the fol
ing two factors.

~i! The steady-state fixed point changes the sense o
displacement in phase space at a certain value of the m
lation parameter that lies within the unstable domain~it was
A523 in the example of Figs. 1–5 andd50 in that of Figs.
6–9!.

~ii ! The modulated system does not follow the displa
ment of the steady-state point in phase space going ‘
hind’’ that point, but going ‘‘in front of’’ it.

Both factors must be met for most of the system’s va
ables~or phase space projections!.

Combination of these two factors implies that, necess
ily, the distance between the modulated and unmodula
systems in phase space decreases to zero just when the
point changes its displacement sense. This leaves only
duced fraction of the total modulation period available
growing divergence between the modulated and unmo
lated systems, so that this divergence cannot reach large
ues and efficient tracking can be achieved.

Because of the factor~ii !, it is difficult to establish simple
precise rules to determine in which systems and in wh
conditions efficient tracking of steady states can be achie
in a wide domain of modulation frequencies. In particular
does not seem to be directly determined by the values of
characteristic exponents describing the stability of
s.
.

-

its
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xed
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steady-state solution, nor by the subcritical or supercriti
character of the local bifurcations affecting that solutio
Rather, it seems to be determined by qualitative dyna
features of the modulation process—such as factor~ii !
above—and symmetry considerations. Factor~ii ! is contrary
to what would be expected from simplistic approaches, bu
occurs at least for the two models considered in this w
~and for the model of Ref.@13# pointed out above!. It is well
known that parameter sweeping or modulation, even whe
is slow, can strongly modify the dynamic behavior of a no
linear system, in a way that can hardly be predicted fr
simple reasoning. It would be interesting to investiga
whether factor~ii ! occurs in most nonlinear systems or no
and to what point it can be influenced by the values of
characteristic exponents of the local stable and unsta
manifolds of the tracked steady state, in order to ascertain
degree of generality of the tracking effect here described
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